

Industrielle Bussysteme : Internet

Dr. Leonhard Stiegler

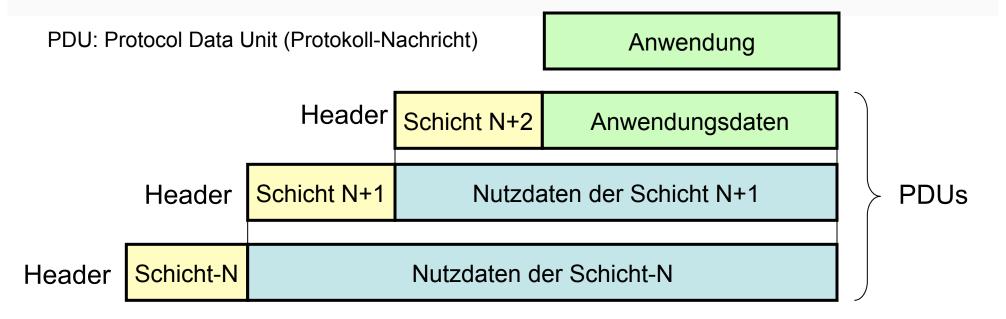
Automation

www.dhbw-stuttgart.de

Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

Definition: Kommunikationsprotokoll


Kommunikationsprotokolle spezifizieren:

- Formate, Datentypen und Inhalte der Protokollnachrichten (PDUs)
- Protokollschichten, welche PDUs austauschen
- Zeitbedingungen für den PDU-Austausch
- Dienste, welche von unteren Schichten zur Verfügung gestellt werden
- Protokoll-Zustände und die erlaubten Zustandsübergänge beschrieben durch Zustandsdiagramme
- Fehlerbehandlung

Kommunikation der Protokollschichten

- Jede Protokollschicht besitzt einen Protokollheader, der die Funktionen der Protokollschicht realisiert.
- Jede Protokollschicht stellt ihren Header vor die Daten der darüber liegenden Schicht
- Eine Protokollnachricht der Schicht-N enthält alle darüber liegenden Protokollschichten.

IETF Dokumente

Request for Comments RFC: offizielle IETF Dokumente

Experimental RFC: Versuchsstadium

Informal RFC: zur Information und Koordination

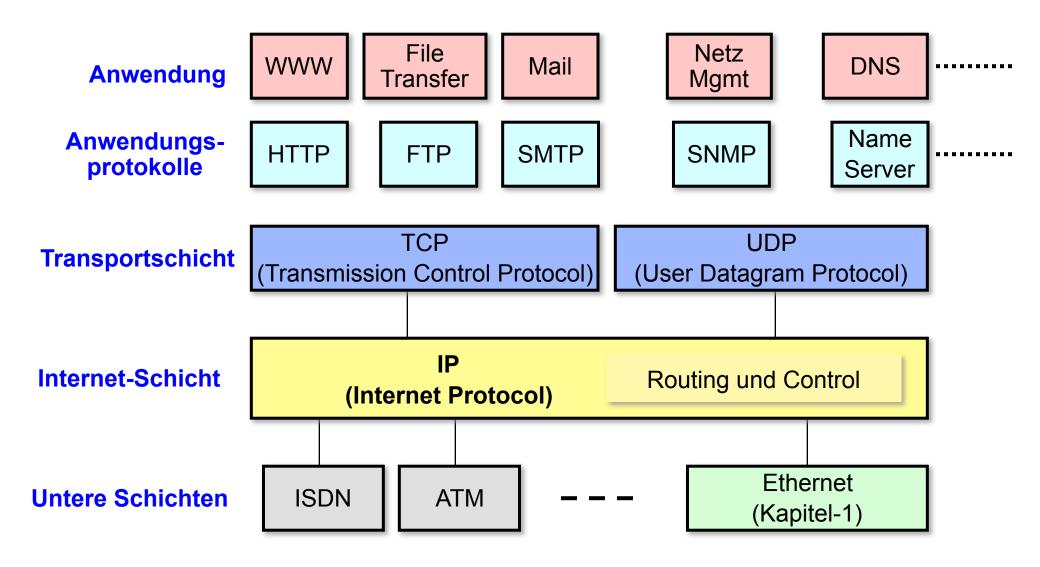
Best Current Practice RFC: Implementierungs-Hinweise

Standards Track RFC: offizielle Standards

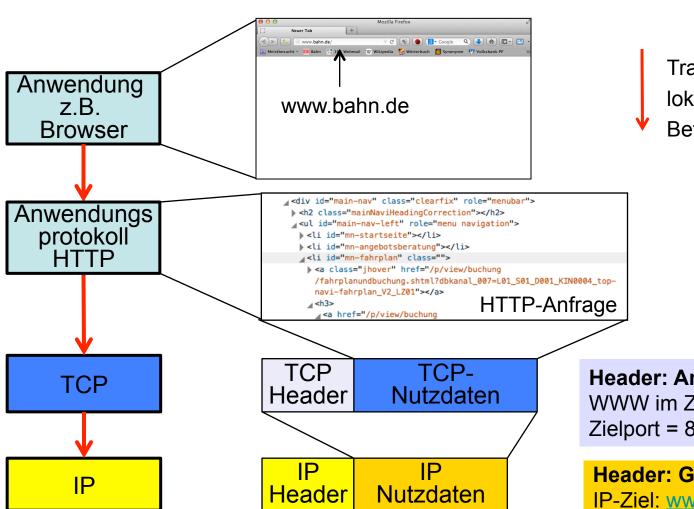
(Standard-Vorschläge, Draft standard)

Internet Draft Documents (ID): nicht-offizielle Arbeits- papiere,

mögliche RFC-Vorläufer


Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP


Internet-Protokollfamilie

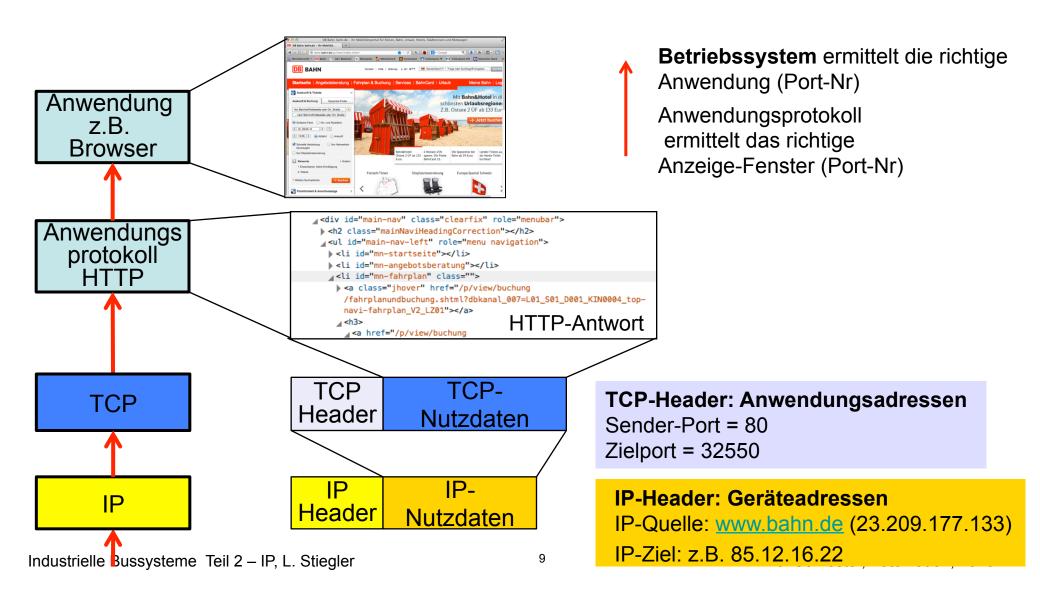
Verarbeitung von IP-Paketen: Sender

Transport der Daten erfolgt lokal durch das Betriebssystem

Header: Anwendungsadressen

WWW im Zielserver:

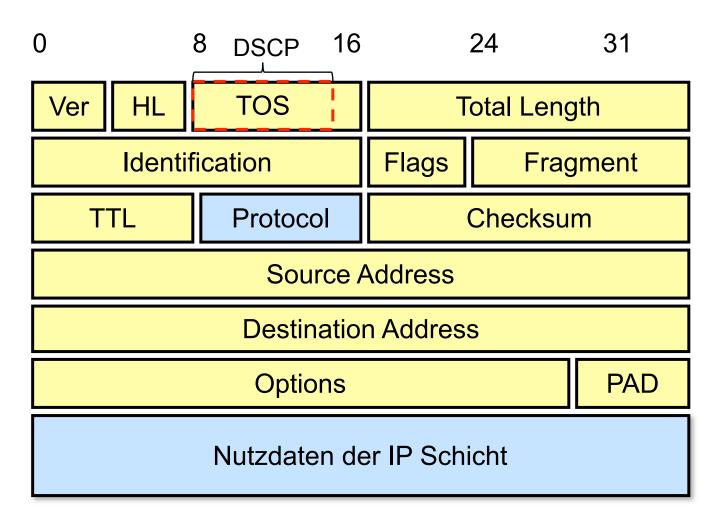
Zielport = 80 Sender-Port = z.B. 32550


Header: Geräteadressen

IP-Ziel: <u>www.bahn.de</u> (23.209.177.133)

IP-Quelle: z.B. 85.12.16.22

Verarbeitung von IP-Paketen : Empfänger


Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

Internet Protokoll Schicht - IPv4 Header

DSCP: Differentiated Services Code Point

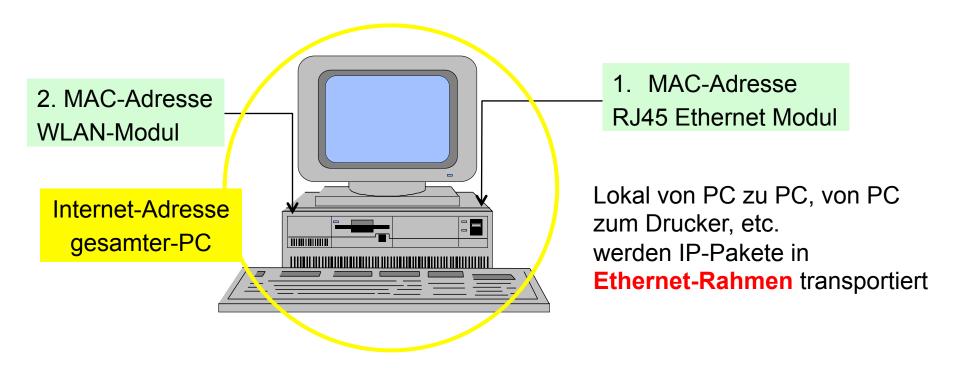
IP-Header Parameter (1)

Feldname	Länge [Bits]	Bedeutung
VER	4	IP Versionsnummer
HL	4	Header Länge in 32-Bit Einheiten
TOS	8	Type of Service Bits 0-5: DSCP (Differentiated Services Code Point) Bits 6-7: ECN (Explicit Congestion Notification – IP-Flusskontrolle)
Total Length	16	Paketlänge in Bytes
Identification	16	Steuerung der Fragmentierung
Flags	3	Bit 0 reserviert = 0Bit 0 Bit 1 DF Don't Fragment Bit 2 MF More Fragments
Fragment	13	Fragment Offset

IP-Header Parameter (2)

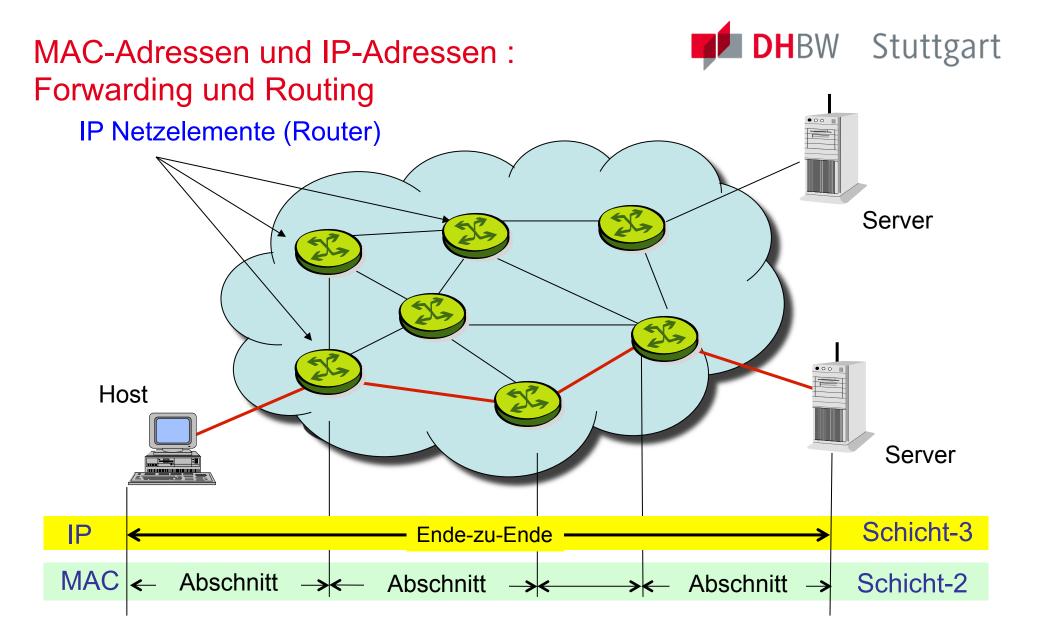
Feldname	Länge [Bits]	Bedeutung
TTL	8	Time to Live : Lebensdauer in Anzahl der Hops
Protocol	8	Protokollname der folgenden Schicht
Checksum	16	Header Prüfsumme
Source Address	32	Sender-Adresse
Destination Address	32	Ziel-Adresse
Options	Max. 32	Zusatzinformation für Routing und Transport-Sicherheitsmethoden
PAD	Variabel	Füllbits zu 32 Bit
Data	Variabel	Nutzdaten

Kursgliederung



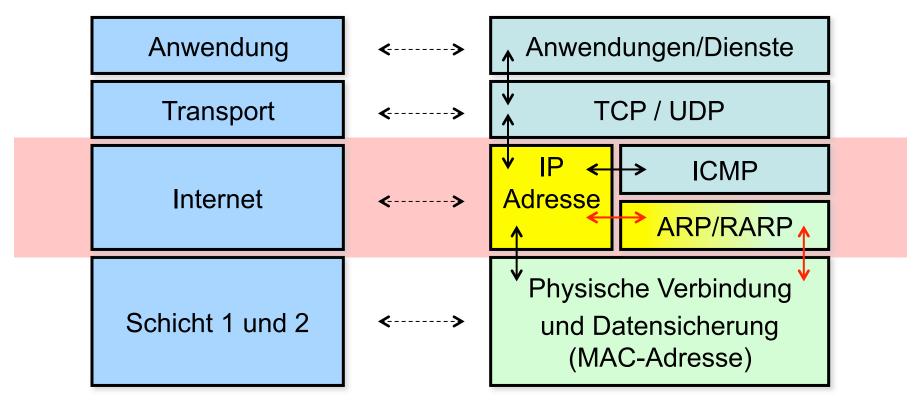
- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

MAC-Adressen und IP-Adressen

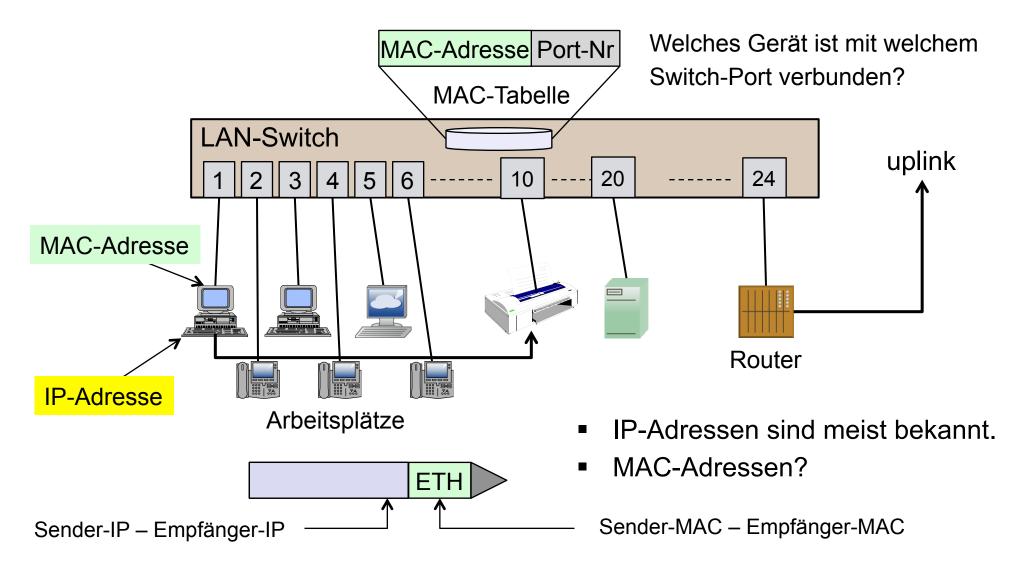


MAC-Adressen sind vom Hersteller fest vorgegeben

Internet Adressen werden zugeteilt

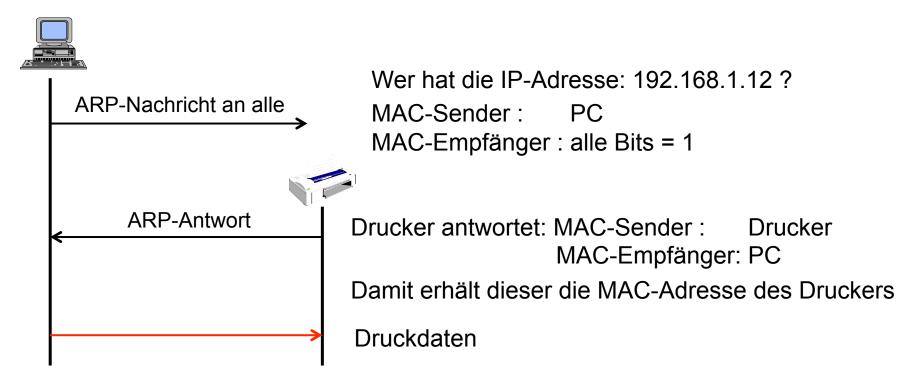

Mittels der Internet Adresse wird ein Gerät (Host) eindeutig adressiert

IP - MAC Adressenzuordnung


Die Kooperation zwischen Schicht-2 und Schicht-3 spielt für die Kommunikation im Anschlussbereich eine entscheidende Rolle.

Drahtgebunden z. B. Ethernet oder drahlos z.B. WLAN

Adressierung im LAN



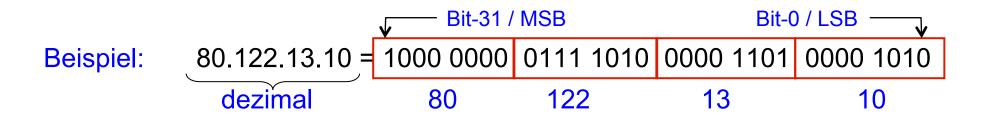
Address Resolution Protocol – ARP Beispiel

- PC kennt die IP-Adresse des Druckers (z.B. 192.168.1.12 aus der Drucker-Konfiguration) aber nicht dessen MAC-Adresse
- PC benötigt die MAC-Adresse des Druckers um diesen ein Ethernet-Paket schicken zu können

Aufgabe

- Analysieren Sie mittels Wireshark das Protokollverhalten Ihres Raspberry PI sobald er mit dem WLAN Router verbunden ist.
- Auf welche Weise wird die MAC-Adresse des Routers ermittelt?

Kursgliederung



- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

IP-Adressen Darstellung

- Internet Adressen des IPv4-Protokolls sind 32-Bit lang.
- Sie werden in vier Teile a' 8 Bit zerlegt und als Dezimalzahlen angegeben

- Die Internetadresse wird in zwei logische Teile zerlegt:
- Der vordere Teil (höherwertige Bits) benennt das Netz, zu dem die IP-Adresse angehört (Netz-Teil)
- Der hintere Teil (niederwertige Bits) adressiert alle Terminals (Hosts).
- Die **Netzmaske** legt die beiden Teile (Netz- und Host-Adresse) fest.

Adressklassen

IPv4 Adressen werden in Klassen und Spezialfunktionen eingeteilt. Die Klasseneinteilung geschieht je nach Größe der Netz- bzw. Host-Anteile.

Klasse-A: Prefix: **0 Bereich**: 0.0.0.0 bis 127.0.0.0

8-bit Network (/8) 8-Bit Netz + 24-Bit Host

Klasse-B: Prefix: **1 0 Bereich**: 128.0.0.0 bis191.255.255.255

16-bit Network (/16) 16-Bit Netz + 16-Bit Host

Klasse-C: Prefix: **1 1 0 Bereich**: 192.0.0.0 bis 223.255.255.255

24-bit Network (/24) 24-Bit Netz + 8-Bit Host

Klasse-D: Prefix: **1 1 1 0 Bereich**: 224.0.0.0 bis 239.255.255.255

Adressierung von Host-Gruppen (Multicast)

■ Klasse-E: Prefix: 1 1 1 1 Bereich: 240.0.0.0 bis 255.255.255.255

reservierter Bereich

Subadressierung und Netzmasken

Subadressierung durch Maskierung = Trennung von Netz- und Host-Adressen

Klasse	NETZ		HOST			Netzmas	ke	
Α	11111111	0000000	0000000			255. 0.	0.0	/8
	11111111	1 0000000	0000000	0000000		255.128.	0.0	/9
	11111111	11 000000	0000000	0000000		255.192.	0.0	/10
	11111111	111 00000	0000000	0000000		255.224.	0.0	/11
	11111111	1111 0000	0000000	0000000		255.240.	0.0	/12
	11111111	11111 000	0000000	0000000		255.248.	0.0	/13
	11111111	111111 00	0000000	0000000		255.252.	0.0	/14
	11111111	1111111 0	0000000	0000000		255.254.	0.0	
В	11111111	11111111	00000000	00000000				
	Beispiel: IP-A	dresse:	01010000	01111010	000110	10 00001	010 /	24
	AND	-Funktion:	11111111	11111111	111111	11 00000	000	
	Netz	-Anteil:	01010000	01111010	000110	10 00000	000	
			Auswertun	g durch den Ro	uter	Hostadr	essen	

Subnetz-Berechnung

 Beispiel: Klasse-C Netz Berechnungstabelle:

27	J
11111111.11111111.111111111111111111111	00000

Bit-Wert	128	64	32	16	8	4	2	1
geborgte Bits	1	2	3	4	5	6	7	8
Maskenwert	128	192	224	240	248	252	255	256
Prefix	/25	/26	/27	/28	/29	/30		
Max. Anzahl an Hosts +1 (Broadcast) + 1(Netz)	126	62	30	14	6	2		

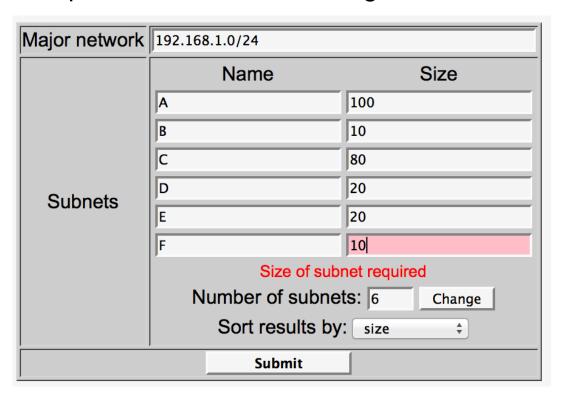
Beispiel: 192.168.10.40 /27 :

Subnetz-Maske 255.255.255.224

3-Bits wurden vom Klasse-C Netz entnommen: $2^3 = 8$ Subnetze

3-Bits entsprechend dem Bitwert 32

gehört zur Netzadresse: 192.168.10.**32**


gehört zur Broadcast-Adresse: 192.168.10.63

Nächstes Subnetz: 192.168.10.64

Dimensionierung von Sub-Netzen

- Variable Length Subnet Masking ist eine Methode, mit der Netz-Administratoren den verfügbaren Adressenraum in Subnetze von unterschiedlicher Größe einteilen können. URL: http://www.vlsm-calc.net/
- Beispiel: Adressenberechnung für 6 Subnetze

Ergebnis: (Auszug)

Address	Mask
192.168.1.0	/25
192.168.1.128	/25
192.168.2.0	/27
192.168.2.32	/27
192.168.2.64	/28
192.168.2.80	/28

Private Internet-Adressenbereiche

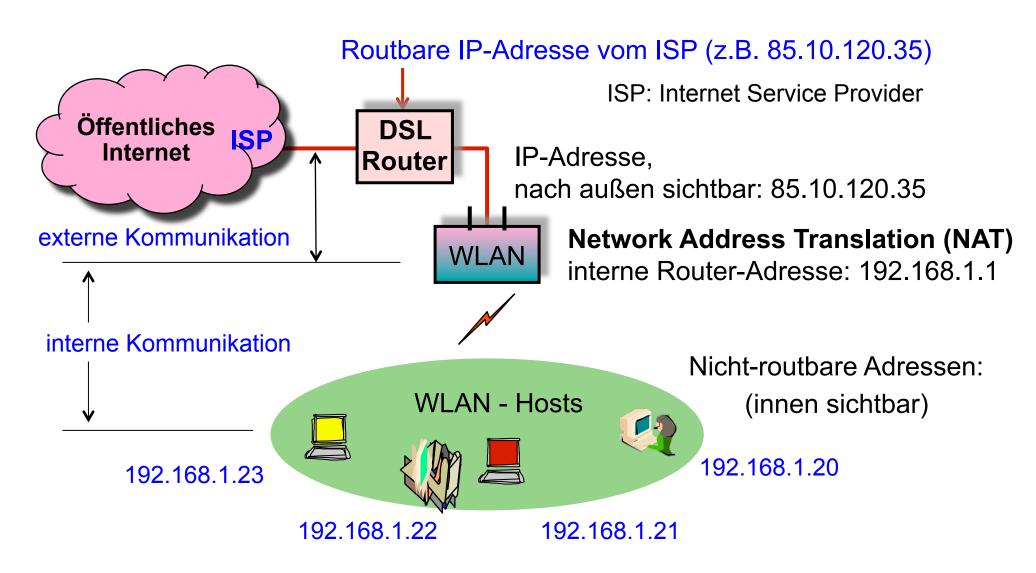
- Nicht-öffentliche Adressenbereiche
 - sind nicht eindeutige, mehrfach verwendbare Adressen
 - werden verwendet f\u00fcr effektive Verwendung des begrenzten Adressraumes
 - sind durch spezielle IETF-Standards definiert

Als nicht-öffentliche Adressbereiche sind reserviert:

```
- 10. 0. 0. 0 - 10.255.255.255 (/8)
```

$$-$$
 172.16. 0.0 $-$ 172. 31.255.255 (/12)

IP Adressenvergabe



- Jeder Internet-Host benötigt für die Kommunikation eine eigene Internet-Adresse
- Die Vergabe dieser IP-Adresse erfolgt entweder
 - automatisch (dynamisch) durch einen speziellen DHCP-Server oder
 - statisch durch den Administrator
- Die automatische / dynamische Adressenvergabe verwendet das Dynmanic Host Configuration Protocol - DHCP
- Die DHCP-Funktion kann auch von einem Router ausgeführt werden

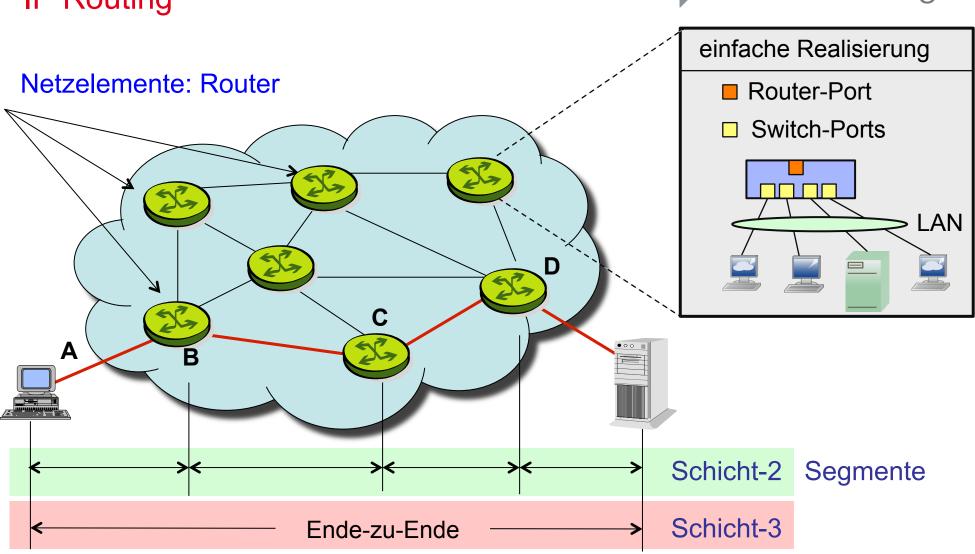
DHCP-Server zur dynamischen Vergabe von IP-Adressen

Network Address Translation - NAT

Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

Routing: Allgemeine Definition

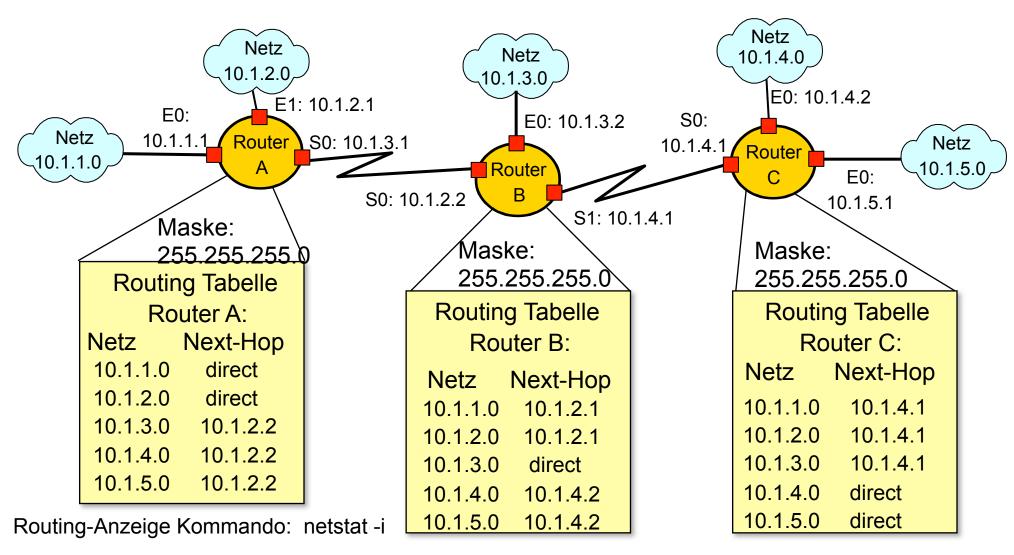

Grundlegender Prozess in allen Telekommunikations- Netzen Routing-Aufgaben werden vom Router durchgeführt

Der Router

- leitet Information von der Quelle zum Ziel
- verwendet dafür spezielle Methoden, einschl. grafische Theorie
- verwendet spezielle Routing-Protokolle
- wertet die Ziel-Adressen aus um den optimalen Pfad durch das Netz zu finden
- bewertet spezielle Kriterien (Metrik) für die Wege-Auswahl
- behandelt Netzfehler bei der Weiterleitung von Informationen

IP Routing

Routing-Tabelle



Inhalt einer Routing-Tabelle

- Zieladresse (erforderlich) : bestimmt das Zielnetz für den Router
- Zielführung (erforderlich): markiert ein direkt verbundenes Netz oder einen Folge-Router (next-hop), welcher einen Schritt näher am Ziel liegt
- Angabe über das Routingprotokoll
- Art des verbundenen Netzes oder Netzabschnitts, z.B. Ethernet, serial link, usw.
- Standard Route (default route indication)

IP Routing - Prinzip

Routing Protokolle

Routing Prozeduren dienen

- dem Austausch von Erreichbarkeits-Informationen zwischen Routern
- der Erstellung einer Routing-Tabelle
- der Berücksichtigung von Netz-Topologie-Änderungen in der Routing-Tabelle
- der Bewertung von empfangener Erreichbarkeits-Information
- der Bestimmung optimaler Routes basierend auf der Erreichbarkeitsinformation

Routing Methode: Hierarchisches Routing

- wird bei großen Netzen verwendet
- Routing-Aufwände nehmen mit der Netzgröße zu: proportional zur Anzahl der Knoten
- Behandlung von Routing-Tabellen : langsam und umständlich in sehr großen Netzen
- Konsequenz : Strukturieren von Netzen in mehrere untereinander verbundene Domänen (z.B. Autonomous Systems AS im Internet)
- Hierarchisches Routing : intra-domain und inter-domain
- Verschieden Protokolle : Interior Gateway Protocols IGP (intradomain) und Exterior Gateway Protocols EGP (inter-domain)

Routing Methode: Statisches Routing

Charakteristika und Optionen

- Definition und Bildung einer Routing-Tabelle für jeden Router im Netz
- Manuelle Eingaben fester Leitwege durch den Operator
- Exakte Kontrolle und Voraussage von Paket-Laufwegen
- Neu-Definition und manuelle Eingabe bei Konfigurationsänderung
- Summen (summary) Routes für die Bearbeitung spezifischer
 Adressen in der Routing-Tabelle : Definition von Adressmasken

Routing Methode: Dynamisches Routing

Charakteristika und Optionen

- Automatische Generierung von Routing-Tabellen bei der Inbetriebnahme des Netzes.
- Austausch von Erreichbarkeits-Information zwischen den Routern der angeschlossenen Netze
- Verwendung spezieller Routing-Protokolle, welche den Informationsaustausch regeln
- Verbreitung spezifischer Algorithmen zur Berechnung der optimalen
 Pfade durch das Netz und Generierung der Routing-Tabellen
- Flexible, dynamische Anpassung der Routing-Tabellen auch bei Netz-Topologieänderungen.

Metrik zur Routen-Bewertung

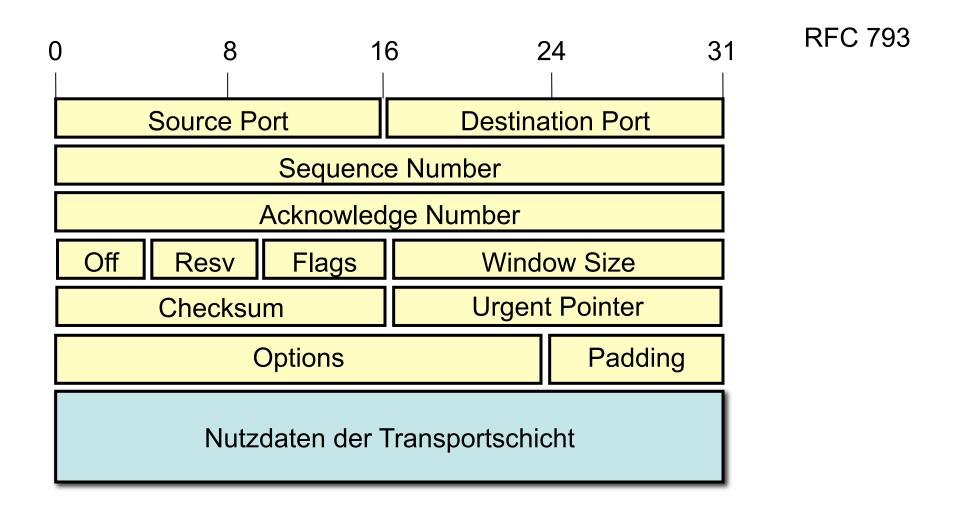
Aufgabe einer Metrik

- Es existieren i.a. mehrere alternativ-Routen zwischen Quelle und Ziel
- Aufgabe: Erkennen der am besten geeigneten Route unter verschieden Alternativen
- Definition einer Metrik als Maß für die optimale Eignung einer Route
- Eine oder mehrere Metriken werden ausgewählt für spezielle Routing-Protokolle
- Wichtige Metriken für dynamisches Routing:
 - hop count
 - Verkehr
 - Zuverlässigkeit (z.B. Fehlerrate)

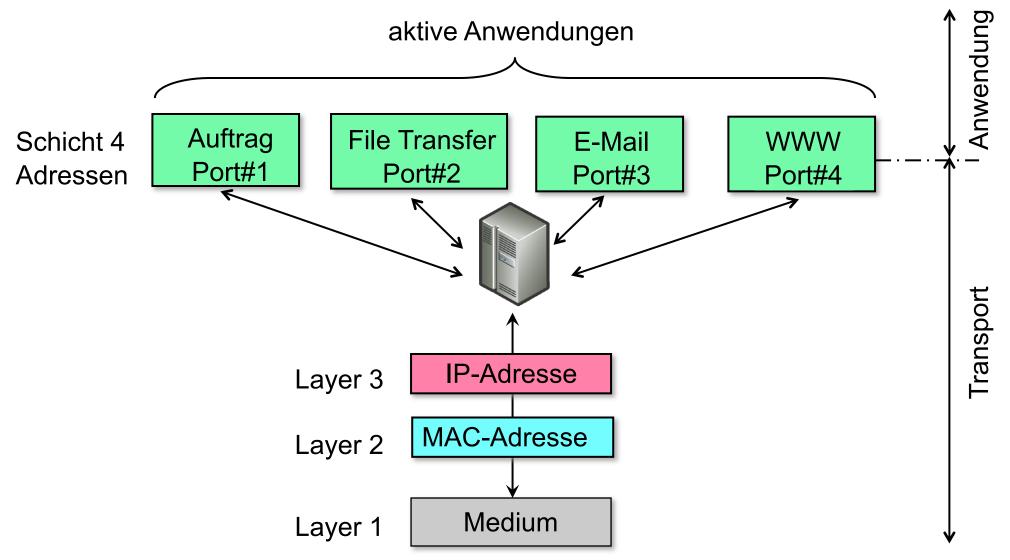
- Bandbreiten-Bedarf
- Paket-Verzögerung
- Kosten

Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

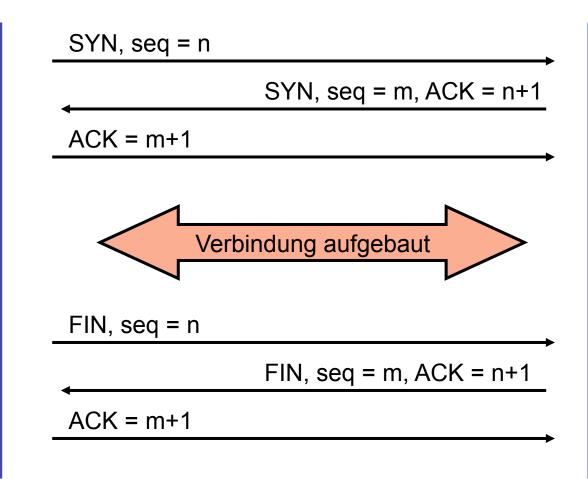

Transportschicht - TCP und UDP

- Die IP-Protokoll-Architektur bietet auf der Transport-Ebene zwei grundsätzliche Transport-Verfahren
- Das TCP Transmission Control Protocol unterstützt den verbindungsorientierten und gesicherten Transport von Daten
- Das UDP User Datagram Protocol unterstützt den verbindungslosen und ungesicherten Transport von Daten


Transmission Control Protocol TCP

Transport-Adresse (Port)

Standard Anwendungen

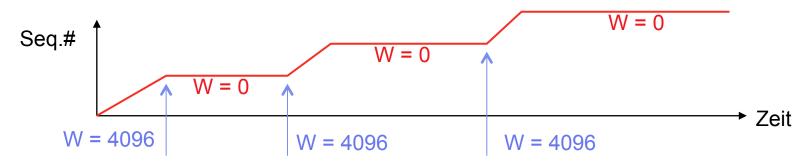

In einer UNIX-Umgebung werden die verfügbaren Standard-Anwendungen in der Datei: etc/services aufgelistet:

ftp-data	20/udp/tcp	# File Transfer [Default Data]
rip-uaia	20/ddp/tcp	-
ftp	21/udp/tcp	# File Transfer [Control]
ssh	22/udp/tcp	# SSH Remote Login Protocol
telnet	23/udp/tcp	# Telnet
smtp	25/udp/tcp	# Simple Mail Transfer
tftp	69/udp/tcp	# Trivial File Transfer
www	80/tcp	#www, http
pop3	110/udp/tcp	# Post Office Protocol - Version 3
ntp	123/udp/tcp	# Network Time Protocol
snmp	161/udp/tcp	# SNMP
snmptrap	162/udp/tcp	# SNMPTRAP
ldap	389/udp/tcp	# Lightweight Directory Access Protocol

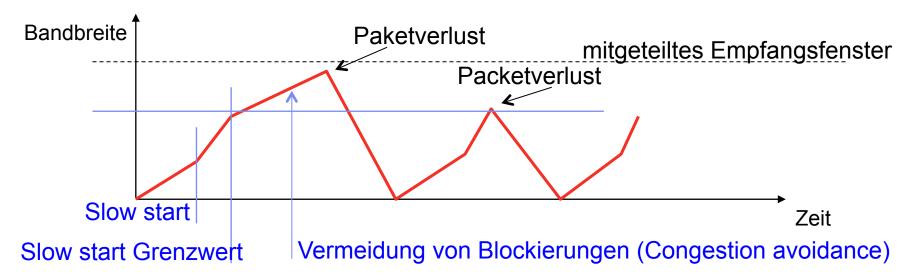
TCP Signalisierung

Client Server

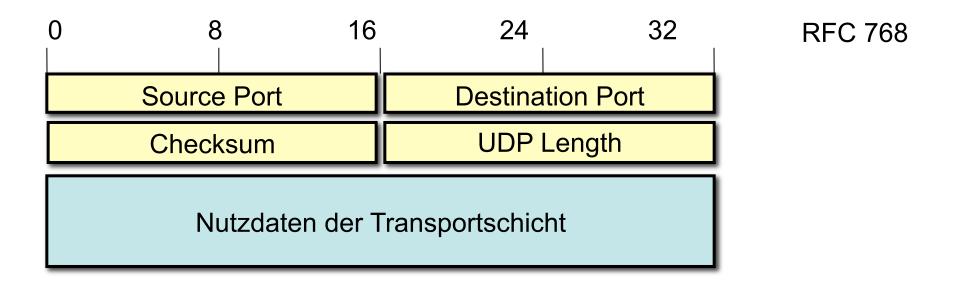
Verbindungsaufbau


Datenaustausch

Verbindungsabbau


Flusskontrolle / Blockierungs-Kontrolle

1. Der Empfänger bestimmt die Quittungs-Fenstergröße des Senders



2. Paketverlust:

User Datagram Protocol UDP

- Verbindungslose Kommunikation
- Ungesicherter Datentransport
- Keine Fehlererbehebung bei fehlerhaften Daten
- Für Echtzeitverbindungen geeignet

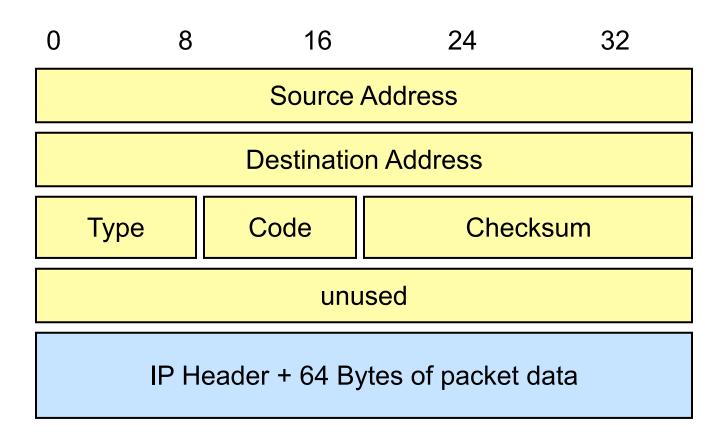
Kursgliederung

- Einführung: Telekommunikationsprotokolle
- Internet Protokollschichten
- IP Version 4
- Beziehung : MAC-Adresse IP-Adresse
- IP Adressierung, Subnetze
- Übersicht : IP-Routing
- IP Transportschichten: TCP und UDP
- Internet Control Protocol ICMP

ICMP - Internet Control Message Protocol

- ICMP ist ein integraler Bestandteil des Internet Protokolls, und muss in jedem IP-Modul implementiert sein. ICMP Protocol-Id = 1
- ICMP Nachrichten zeigen Protokollfehler bei der Verarbeitung von IP-Paketen an.
- ICMP Nachrichten werden in verschiedenen Umständen generiert:
 - wenn ein Paket sein Ziel nicht erreichen kann,
 - wenn ein Netzknoten nicht genug Speicherkapazität besitzt, um ein Paket weiterzuleiten
 - USW...

ICMP Nachrichten



Name der Nachricht	Nr
Destination Unreachable Time exceeded (TTL-Fehler) Parameter Problem Source Quench Redirect Echo (z.B. ping) Echo Reply (z.B. ping) Timestamp Timestamp Reply Information Request Information Reply	3 11 12 4 5 8 0 13 14 15 16

ICMP Header Beispiel

Nachrichtenname: Destination unreachable (3):

